Algebraic Properties of a Family of Generalized Laguerre Polynomials
نویسنده
چکیده
We study the algebraic properties of Generalized Laguerre Polynomials for negative integral values of the parameter. For integers r, n ≥ 0, we conjecture that L n (x) = Pn j=0 `n− j+r n− j ́ x / j! is a Q-irreducible polynomial whose Galois group contains the alternating group on n letters. That this is so for r = n was conjectured in the 1950’s by Grosswald and proven recently by Filaseta and Trifonov. It follows from recent work of Hajir andWong that the conjecture is true when r is large with respect to n ≥ 5. Here we verify it in three situations: (i) when n is large with respect to r, (ii) when r ≤ 8, and (iii) when n ≤ 4. The main tool is the theory of p-adic Newton Polygons. Received by the editors September 5, 2006. This work was supported by the National Science Foundation under Grant No. 0226869. AMS subject classification: Primary: 11R09; secondary: 05E35. c ©Canadian Mathematical Society 2009. 583
منابع مشابه
Numerical solution of Fredholm integral-differential equations on unbounded domain
In this study, a new and efficient approach is presented for numerical solution of Fredholm integro-differential equations (FIDEs) of the second kind on unbounded domain with degenerate kernel based on operational matrices with respect to generalized Laguerre polynomials(GLPs). Properties of these polynomials and operational matrices of integration, differentiation are introduced and are ultili...
متن کاملThe Operational matrices with respect to generalized Laguerre polynomials and their applications in solving linear dierential equations with variable coecients
In this paper, a new and ecient approach based on operational matrices with respect to the gener-alized Laguerre polynomials for numerical approximation of the linear ordinary dierential equations(ODEs) with variable coecients is introduced. Explicit formulae which express the generalized La-guerre expansion coecients for the moments of the derivatives of any dierentiable function in termsof th...
متن کاملApplication of Laguerre Polynomials for Solving Infinite Boundary Integro-Differential Equations
In this study, an efficient method is presented for solving infinite boundary integro-differential equations (IBI-DE) of the second kind with degenerate kernel in terms of Laguerre polynomials. Properties of these polynomials and operational matrix of integration are first presented. These properties are then used to transform the integral equation to a matrix equation which corresponds t...
متن کاملApproximate Solutions for a Certain Class of Fractional Optimal Control Problems Using Laguerre Collocation Method
In this paper, an approximate formula of the fractional derivatives (Caputo sense) is derived. The proposed formula is based on the generalized Laguerre polynomials. Special attention is given to study the convergence analysis of the presented formula. The spectral Laguerre collocation method is presented for solving a class of fractional optimal control problems (FOCPs). The properties of Lagu...
متن کاملGeneralized numerical ranges of matrix polynomials
In this paper, we introduce the notions of C-numerical range and C-spectrum of matrix polynomials. Some algebraic and geometrical properties are investigated. We also study the relationship between the C-numerical range of a matrix polynomial and the joint C-numerical range of its coefficients.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004